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Background

• Coupled systems are commonly used
– Large scale system: computation, simulation, etc

– Special-purpose system: data analysis, 
visualization, etc

• Coupled applications:
– Simulation / computing applications

– Visualization/data analysis applications

– Example: FLASH & vl3, PHASTA & ParaView



Coupled systems examples

• Intrepid & Eureka @ANL
– Intrepid: IBM Blue Gene/P with 163, 840 cores  (#13 in Top500)
– Eureka: 100-node cluster with 200 GPUs  (largest GPU installation)

• Ranger & Longhorn @TACC
– Ranger:  SunBlade with 62,976 cores (#15 in Top500)
– Longhorn: 256-node Dell Cluster, 128 GPUS

• Jaguar & Lens @ORNL
– Jaguar: Cray XT5 with 224, 162 cores (#3 in Top500)
– Lens:  32-node Linux cluster, 2 GPUs

• Kraken & Verne @ NICS/UTK
– Kraken: Cray XT5 with 98,928 cores (#8 in Top500)
– Verne: 5-node Dell cluster. 

• And so on … …



Motivation

• Post-hoc execution
– Computing applications write data to storage system, 

and then analysis applications read data from storage 
system and process

– I/O time consuming

• Co-execution is increasingly demanded:
– Saving I/O time by transfer data from simulation 

application to visualization/data analysis (an ongoing 
project named GLEAN)

– Co-execution enables monitoring simulations, 
debugging at runtime

– Heterogeneous computing



Problem statement

• System A and B running parallel jobs
– Job schedulers / scheduling policies are independent

– Job queues are independent

• Some of jobs on A has associated (mate) jobs on B. 
– Mate jobs are in pairs: one on A, the other on B

• Co-scheduling Goal:
– Guarantee the mate jobs in the same pair start at same 

time on their respective hosting system without manual 
reservation

– Limit the negative impact of system performance and 
utilization.



Related work

• Meta scheduling
– Managing jobs on multiple clusters via a single instance
– Moab by Adaptive Computing Inc, LoadLeveler by IBM
– Our work is more distributed. Different scheduler running 

on independent resource management domain can 
coordinate job scheduling.

• Co-Reservation
– Co-allocation of compute and network resources by 

reservation
– HARC (Highly-Available Resource Co-allocator)  by LSU
– Our work doesn’t involve manual reservation; co-

scheduling is automatically coordinated.



Basic schemes

• When a job can start to run on a machine 
while its mate job on the remote machine 
cannot, it may “hold” or “yield”.

• Hold
– Hold resources (nodes) which cannot be used by 

others until the mate job can run

• Yield
– Give up the turn of running without holding any 

resources



Algorithm



flowchart



Strategies combination

• Hold-Hold
– Good for the sync-up of mated jobs

– Bad for system utilization

– May cause deadlock

• Yield-Yield
– No hurt for system utilization

– Bad for mated jobs waiting

• Hold-Yield (or Yield-Hold)
– Behave respectively



Deadlock
• Coupled systems A & B, both use “hold” 

scheme

• Circular wait (a1b1b2a2a1)



Enhancements

• Solving Deadlock

– Release all the held nodes periodically (e.g. every 
20 minutes)

• Reduce overhead

– Threshold for yielding times

• Fault-Tolerance consideration

– A job won’t wait forever when the remote 
machine is down



Evaluation

• Event-driven simulation using real job trace 
from production supercomputers.

• Qsim along with Cobalt resource manager.



Experiment goals

• Investigate the impact by tuning system load

• Investigate the impact by tuning the 
proportion of paired jobs.



Job traces

• Intrepid (real trace)

– One month, 9220 jobs, sys. Util. 70%

• Eureka (half-synthetic,  packed into one month)

– Trace 1: 5079 jobs, sys. Util. = 25%

– Trace 2: 11000 jobs, sys. Util. = 50%

– Trace 3: 14430 jobs, sys. Util.  = 75%

– Synthetic: 9220 jobs. Sys. Util. = 48%



Evaluation Metrics

• Avg. waiting time
– Start time – Submission time
– Average among total jobs

• Avg. slowdown
– (wait time + runtime) /runtime
– Average among total jobs

• Mated job sync-up overhead
– How many more minutes need to wait in co-scheduling
– Average among all paired jobs

• Loss of computing capability
– Node-hour
– System utilization rate



Average wait by sys. Util.

Scheme on Intrepid-Eureka
HH: Hold-Hold
HY: Hold-Yield
YH: Yield-Hold
YY: Yield-Yield

Sys util. on Eureka:
25%   50%    75%



Slowdown by sys. Util.



Coscheduling overhead by sys. Util.
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Loss of computing capability by sys. Util.
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Avg. wait by proportion of paired jobs



Slowdown by proportion of paired jobs



Overhead by proportion of paired jobs
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Loss of computing capability by proportion 
of paired jobs
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Summary

• Designed and implemented coscheduling
algorithm to start associated at the same time in 
order to fulfill multiple needs of certain 
applications, such as reducing I/O overhead in 
coupled HEC environment.

• Evaluated the coscheduling impact on system 
performance and overhead for jobs needing co-
scheduling.

• Conclusion: coscheduling can work with some 
acceptable overhead under different system 
utilization rate and proportion of mated jobs.



Thank you!


